Insulin secretion and its modulation by antiarrhythmic and sulfonylurea drugs.
نویسندگان
چکیده
Cardiovascular drugs such as antiarrhythmic agents with Vaughan Williams class Ia action have been found to induce a sporadic hypoglycemia. Recent investigation has revealed that these drugs induce insulin secretion from pancreatic beta-cells by inhibiting ATP-sensitive K+ (KATP) channels in a manner similar to sulfonylurea drugs. The mechanism underlying block of KATP channels by antiarrhythmic drugs was different, however, from that of sulfonylureas: firstly, because binding of radioactive glibenclamide could not be inhibited by unlabelled antiarrhythmic agents, and vice versa; secondly, because the two compounds differ in the kinetics and sidedness of drug action-antiarrhythmic drugs act on the channel from the inner surface of the cell membrane, whereas glibenclamide binds through the intramembrane pathway; finally, it was shown that functional KATP channels in beta-cells are composed of two distinct molecules-a sulfonylurea receptor (SUR) and a channel pore-forming subunit, an inwardly-rectifying K channel with two transmembrane regions (Kir6.2). Antiarrhythmic drugs reversibly inhibit the K+ conductance displayed by the Kir6.1 (a putative KATP channel clone)-transfected NIH3T3 cells. Therefore they appear to interact directly with the pore-forming subunit, thereby inhibiting KATP channel currents and exerting an insulinotrophic effect.
منابع مشابه
بررسی اثر گلیبنکلامید بر ترشح انسولین و فعالیت گلوکوکیناز در جزایر لانگرهانس پانکراس موشهای صحرایی سالم و دیابتی
Background: Sulfonylurea agents such as Glibenclamide (Glyburide) have been widely prescribe in treatment of type 2 diabetic patients for decades, but controversy remains about their precise mechanism of action. On the other hand, glucokinase serves as a glucose sensor in pancreatic β-cells and plays a key role in the regulation of insulin secretion and glucose homeostasis. The aim of the pres...
متن کاملRole of Epac2A/Rap1 signaling in interplay between incretin and sulfonylurea in insulin secretion.
Incretin-related drugs and sulfonylureas are currently used worldwide for the treatment of type 2 diabetes. We recently found that Epac2A, a cAMP binding protein having guanine nucleotide exchange activity toward Rap, is a target of both incretin and sulfonylurea. This suggests the possibility of interplay between incretin and sulfonylurea through Epac2A/Rap1 signaling in insulin secretion. In ...
متن کاملMolecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides
Sulphonylureas stimulate insulin secretion from pancreatic β-cells primarily by closing ATP-sensitive K(+) channels in the β-cell plasma membrane. The mechanism of channel inhibition by these drugs is unusually complex. As direct inhibitors of channel activity, sulphonylureas act only as partial antagonists at therapeutic concentrations. However, they also exert an additional indirect inhibitor...
متن کاملCloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion.
Sulfonylureas are a class of drugs widely used to promote insulin secretion in the treatment of non-insulin-dependent diabetes mellitus. These drugs interact with the sulfonylurea receptor of pancreatic beta cells and inhibit the conductance of adenosine triphosphate (ATP)-dependent potassium (KATP) channels. Cloning of complementary DNAs for the high-affinity sulfonylurea receptor indicates th...
متن کاملThe cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs.
Epac2, a guanine nucleotide exchange factor for the small guanosine triphosphatase Rap1, is activated by adenosine 3',5'-monophosphate. Fluorescence resonance energy transfer and binding experiments revealed that sulfonylureas, widely used antidiabetic drugs, interact directly with Epac2. Sulfonylureas activated Rap1 specifically through Epac2. Sulfonylurea-stimulated insulin secretion was redu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 34 1 شماره
صفحات -
تاریخ انتشار 1997